Nanotechnology Community
HomeThe SocietyNano HubMembershipBenefitsHow Are Fellows Elected?For Reviewers

Zhengping Fang

Ningbo Institute of Technology
Zhejiang University

Publications

4 books or book chapters, 194 journal papers have been published by 2010.

Selected Publications
1. Polymer Physics, Zhejiang University Press, Hangzhou, 2005
2. Carbon Nanotube Based Fire Retardant Materials, in “Carbon Nanotubes: Multifunctional Materials”, Edited by P. R. Somani, M. Umeno, Applied Science Innovations Pvt. Ltd., 2009
3. Preparation of Layered Double Hydroxide Wrapped Carbon Nanotubes and its application as a flame retardant for polypropylene, Nanotechnology, 2010.8, 21: 315603
4. Effect of styrene-maleic anhydride as a compatibilizer on the mechanical properties and flammability of intumescent flame retardant polystyrene, J. Appl. Polym. Sci., 2010.10, 118(1): 152-158
5. Influence of carbon nanotubes with different functional groups on the morphology and properties of PPO/PA6 blends, J. Appl. Polym. Sci., 2010.5, 116(3): 1322-1328
6. Effect of clay dispersion on the synergism between clay and intumescent flame retardant in polystyrene, J. Appl. Polym. Sci., 2010.1, 115(2): 777-783
7. Improved microhardness and microtribological properties of bismaleimide nanocomposites by enhancing interfacial interaction through carbon nanotube functionalization, Polym. Advan. Technol., 2009.11, 20(11): 849-856
8. Effects of organo-clay and sodium dodecyl sulfonate intercalated layered double hydroxide on thermal and flame behaviors of intumescent flame retarded polypropylene, Polym. Degrad. Stabil., 2009.11, 94(11): 1979-1985
9. Fabrication of fullerene decorated carbon nanotubes and its application in flame retarding polypropylene. Nanoscale, 2009, 1, 118-121
10. The effects of irradiation cross-linking on the thermal degradation and flame retardant properties of the HDPE/EVA/magnesium hydroxide composites, Radiat. Phys. Chem., 2009.8, 78: 922-926
11. Flame retardant mechanism of organoclay and its effect on the thermal, mechanical and rheological properties of intumescent flame retarded polypropylene, Appl. Clay Sci., 2009.7, 45(3): 178-184
12. Amino-functionalization effect on the micro-tribological behavior of carbon nanotube/bismaleimide nanocomposite, J. Appl. Polym. Sci., 2009.9, 113(6): 3484-3491
13. Effects of reactive compatibilization on the morphological, thermal, mechanical and rheological properties of intumescent flame retarded polypropylene, ACS Applied Materials and Interface, 2009.1, 1(2): 452-459
14. Dynamic rheological analysis as a sensitive method for analyzing structural changes during thermo-oxidation of polyolefin elastomer, Chinese J. Polym. Sci. 2009, 27(2): 183-188
15. Fabrication of dendrimer-like fullerene (C60) decorated oligomeric intumescent flame retardant for reducing the thermal oxidation and flammability of polypropylene nanocomposites, J. Mater. Chem., 2009, 19, 1305-1313
16. Influence of polarity on the preferential intercalation behavior of clay in immiscible polypropylene/polystyrene blend, J. Appl. Polym. Sci. 2008.12, 110(5): 3130-3139
17. Intumescent flame retardant-clay synergism in ABS nanocomposites, Appl. Clay Sci., 2008.12, 42: 238-245
18. Preferential intercalation behavior of clay and its effect on thermal degradation in immiscible PP/PS blends, Chinese J. Polym. Sci., 2008.11, 26(6): 783-792
19. "Cutting effect" of organoclay platelets in compatibilizing immiscible polypropylene/polystyrene blends, Journal of Zhejiang University-SCIENCE A, 2008.11, 9(11): 1614-1620
20. Flame retardant wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene, J. Mater. Chem., 2008, 18: 5083-5091
21. Polypropylene/clay nanocomposites prepared by in situ grafting -melt intercalation of a novel co-intercalating monomer, J. Appl. Polym. Sci., 2008.10, 110(1): 616-623
22. P. Song; Z. Fang*; L. Tong; Y. Jin; F. Lu. Effect of metal chelates on a novel oligomeric intumescent flame retardant system for polypropylene, J. Anal. Appl. Pyrol., 2008.7, 82: 286-291
23. C60 reduces the flammability of polypropylene nanocomposites by in situ forming a gelled-ball network, Nanotechnology, 2008.6, 19: 225707
24. Thermal degradation and flame retardancy of polypropylene/C60 nanocomposites, Thermochim. Acta, 2008.5, 473(1-2): 106-108
25. Functionalized carbon nanotubes by grafting intumescent flame retardant and its nanocomposites: synthesis, morphology, rheology and flammability, Adv. Funct. Mater., 2008.2, 18(3): 414-421
26. Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin, Nanotechnology, 2007.9, 18: 375602
27. Effect of clay on the morphology of binary blends of polyamide 6 with high density polyethylene (HDPE) and HDPE-graft-acrylic acid, Polym. Eng. Sci., 2007.5, 47(5): 551-559
28. A novel phosphorous-nitrogen containing intumescent flame retardant: Synthesis and application in ABS resin, Polym. Degrad. Stabil., 2007.4, 92(4): 720-726
29. Effect of multi-walled carbon nanotubes on non-isothermal crystallization kinetics of polyamide 6, Eur. Polym. J., 2006.11, 42: 3230-3235
30. Thermal degradation behavior of multi-walled carbon nanotubes/ polyamide 6 composites, Polym. Degrad. Stabil., 2006.9, 91(9): 2046-2052
31. Polymorphism of nylon 6 in multi-walled carbon nanotubes/nylon 6 composites, J. Polym. Sci. B: Polym. Phys., 2006.5, 44(10): 1499-1512
32. Effect of a novel phosphorous-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviors of PBT resin, Polym. Degrad. Stabil., 2006.3, 91(6): 1295-1299
33. Effect of amino-functionalization on the dispersion of multi-walled carbon nanotubes in epoxy resin matrix, J. Appl. Polym. Sci. 2006.4, 100: 97-104
34. On promoting intercalation and exfoliation of bentonite in high density polyethylene by grafting acrylic acid, J. Appl. Polym. Sci., 2005.6, 96(6): 2429-2434
35. Preparation of sub-micrometer porous membrane from chitosan/polyethylene glycol semi-IPN, J. Membrane Sci., 2004.12, 245(1-2): 95-102.
36. Novel method of preparing microporous membrane by selective dissolution of chitosan/polyethylene glycol blend membrane, J. Appl. Polym. Sci., 2004.3, 91(5): 2840-2847
37. Effect of compatibility on the structure of the microporous membrane prepared by selective dissolution of chitosan/synthetic polymer blend membrane. J. Membrane Sci., 2004.2, 230(1-2): 175-181
38. Silica-supported karstedt-type catalyst for hydrosilylation reactions, Catal. Commun., 2003.12, 4(12), 637-639
39. Application of phase dispersion-crosslinking synergism on recycling of commingled plastic wastes, J. Appl. Polym. Sci., 2001, 82(12): 2947-2952
40. Study on phase dispersion-crosslinking synergism in binary blends of polyvinyl chloride with low density polyethylene, Polymer, 1997, 38(1): 155-158
41. In-situ crosslinking and its synergism with compatibilization in polyvinyl chloride/polyethylene blends, Polymer, 1997, 38(1): 131-133
42. Conformation of poly(phenylsilsesquioxane) in dilute solution, Makromol.Chem., Rapid Commun., 1986, 7: 687-690
Member
Grade: Member

Member since June 11, 2011
Contact Details
Address: 1 Qianhu Road
Phone: +86-574-88130132
Email: visible to members only
The Society
Our Mission
Fellowships
Nano Hub